
hr. 1. Heaf Mass Transfer. Vol. 31, No. 4, pi. 695-707, 1988 
Printed in Great Britain 

0017-9310/88$3.00+0.00 
0 1988 Pergamon Press plc 

A numerical study of three-dimensional natural 
convection in a horizontal porous annulus with 

Galerkin method 
Y. F. RAO 

Department of Energy Conversion Engineering, Interdisciplinary School of Engineering Science, 
Kyushu University, Fukuoka 816, Japan 

and 

K. FUKUDA and S. HASEGAWA 
Department of Nuclear Engineering, Faculty of Engineering, 

Kyushu University, Fukuoka 812, Japan 

(Received 17 April 1987) 

Abstract-A Galerkin scheme is developed to study the three-dimensional natural convection in a fluid- 
saturated porous annulus heated from the inner surface. In addition to the two-dimensional multiple 
solutions reported in the authors’ previous paper, three-dimensional solutions are obtained ; the secondary 
cells, with streaklines of the three-dimensionally closed co-axial double helices, are found extending along 
the axial direction in the top region of the annulus. This brings about an increased maximum local heat 
transfer coefficient, which consequently enhances overall heat transfer compared with that for the two- 

dimensional unicellular flow. 

1. INTRODUCTION 

IN A PREVIOUS paper [l] the authors developed a two- 
dimensional (2-D) Galerkin scheme and investigated 
natural convection in a horizontal porous annulus 
and its related bifurcation phenomena. It was pointed 
out that besides solutions of the simple unicellular 
flows there exists more than one branching solution 
at higher Ra which yields overall heat transfer rates 
coincident better with experimental data. However, 
experimental measurements by Caltagirone [2] of the 
temperatures along a generatrix at the top of the annu- 
lus revealed a wave-like distribution, indicating the 
existence of a three-dimensional (3-D) cellular flow 
extending in the axial direction. He reported that the 
2-D flow existed only at low Ra. Takata’s measure- 
ment [3], though with a limited length in the axial 
direction, also confirmed the claim. Despite this three- 
dimensionality of the flow in the upper part of the 
annulus, however, numerical works in the literature 
[4-121 have all treated the problem with 2-D models, 
and no results have been presented to interpret the 
structure of this flow pattern. Caltagirone [2] 
described a program based on the finite-element 
method but could neither obtain convergent solutions 
nor carry out enough time steps to eliminate the influ- 
ence of the possible strong initial perturbations ; this 
was attributed to the capacity of computers at that 
time. In ref. (131 the authors developed a numerical 
scheme based on the finite-difference (SOR) method 

and obtained 3-D results in an inclined annulus with 
finite axial length. The formation of that flow pattern, 
however, is due to the presence of the component of 
the gravitational force in the axial direction, and it 
is therefore different from the flows in a horizontal 
annulus, where no such force exists and 3-D flow is 
thought to be induced by the instability due to a 
reverse temperature gradient at the top of the annulus 
as in the case of the Benard problem. Only 2-D results 
were obtained for the horizontal case [ 131. As will be 
discussed later, this appears to be due to the fact that 
the use of the converged solutions obtained at lower 
Ra as initial conditions minimized an axial per- 
turbation inherently produced by an SOR scheme, 
and thus prevented the flow from becoming 3-D. 

In the present work, a 3-D Galerkin scheme is 
developed. The temperature as well as the components 
of the vector potential of velocity are expanded with 
a series of orthogonal eigenfunctions similar to those 
the authors developed in the 2-D scheme [l]. The 
scalar product is adopted to form residual equations 
in terms of the components of the vector potential, 
though the vector product has usually been adopted 
in 3-D Galerkin schemes dealing with the same prob- 
lems of natural convection in enclosures [ 17, 181. Dis- 
cussions are made to show that the latter is just a 
special case of the former and the unconditional use 
of the vector product in Galerkin procedures may lead 
to significant errors. 

In the same way as in the authors’ previous work 
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NOMENCLATURE 

iijk 
In R/z 
amplitude of the mode (ij,k) of $r 

B, amplitude of the mode (ij,k) of $@ 
C,, amplitude of the mode (ij,k) of tjZ 
C constants defined in Appendix B 

D.r Dirichelet function 

9 ~avitational acceleration 

Ga l/f/@in- f-o)1 
L dimensionless axial width of three- 

dimensional spiral flow, scaled by the 
inner radius 

iVi, Nj, iVk cutoff numbers 
Nu - 
Nu 
P 
i 
r 

R 
Res 
Res 
Ra 
p 

7;>h. 

t 
V 

local Nusselt number 
average Nusselt number 
pressure 
radius distance 
coordinate in radius direction, scaled by 

rin 

ratio of the outer to the inner radius 
residual in scalar form, equation (20) 
residual in vector form, equation (22) 
Rayleigh number, gBKFin(fin - po)/tleq~ 

temperature 
amplitude of the mode (ij,k) of the 
dimensionless temperature B 
time 
velocity vector 

V,, V+ V, velocity components in the 
direction of the suffix 

z coordinate along the axis of the annulus, 
scaled by Pi,. 

Greek symbols 

% equivalent thermal diffusivity of the 
saturated porous medium 

B thermal expansion coefficient of the fluid 
6 Kronecker delta 

0 ~mensio~ess temperature, 

(f- E)l(rf;, - fob) 
8 dimensionless temperature defined by 

O-(l-lnr/lnR) 

I 
permeability 
direction vector [ -cos qi, sin &O] 

V kinematic viscosity of the fluid 

# angular coordinate measured from 
downward vertical axis 
vector potential of velocity 

components of vector potential in 
direction of the suffix. 

Subscripts 
in inner 
0 outer 
(I,J,K) ; (i,j,k) ; (l,m,n) modes of dimen- 

sionless temperature, velocity or its 
vector potential 

u mode (I, ]m -j 1, In - kl) 

B mode (6 IA, IW 

Other symbols 

V (~,~~,~) 

v2 
1 a a 1 a2 a2 
p-r-f---_I+_i 
rar ar r a4 dz 

c 
i= I 

i= & ,,, when 1 is even ; i= z ,,, when I is odd 
i+l=odd ’ ’ 

. . 

c 2 whenmis even; 
,+~~iXcn i=2.4 I... 

j=z whenmisodd 
1 . 

( ) volume integration over the annular space, 

dr(r d4) dz. 

[ 11, several initial conditions, including uniform tem- 
perature distributions or pure conduction solutions 
with and without perturbations, are adopted and their 
effects on determining final solutions are discussed. A 
randomly distributed perturbation is also introdu~d 
to obtain inform&ion about which of the branching 
solutions is preferred. The structure of the 3-D flow 
is clarified and its influence on the local and overall 
heat transfer examined, which is expected to cast a 
new light on the problem. 

2. ANALYSES 

2.1. Formulation of the problem 
Consider a horizontal porous layer bounded by 

cylinders with its inner surface heated. The numerical 
model is shown in Fig. 1, where the gap between 

the cylinders is filled with a fluid-saturated porous 
medium. The inner and the outer surface, of dimen- 
sionless radii 1 and R, are maintained at different 
uniform dimensionless temperatures 1 and 0, respec- 
tively. The gravitational force on the system exerts 
vertically downward. Cylindrical coordinates are util- 
ized, where 4 is measured from the down vertical, r 
from the axis and z along the axis. Due to the sym- 
metry of the boundary conditions and the gravi- 
tational force, the flow in the annulus is assumed to 
be s~et~c~ about the vertical symmetry plane. 
Since no external force exerts in the z-direction, the 
possible 3-D steady-state flows should take the cellu- 
lar form with symmetry planes normal to the axis, 
planes I and II as shown in Fig. 1. It should be noted 
that in the Darcy problem, the boundary conditions at 
these planes are the same as the symmetry conditions. 
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The corresponding boundary conditions from Hira- 

‘00’ saki and Hellums [ 141 are 

L-i-4 at r= l,R 

.#___~ aJlm ae 
$,=,,=$,=,,=O, at4=0,x (11) 

I I $,=$,=G=g=O, at z=O,L. 

-Z 
2.2. Galerkin scheme 

SIDE VIEW 
The Galerkin method has been described in general 

cases in refs. [15, 161. In the present study, the tem- 
perature and the three components of the vector 
potential are expanded as follows : 

Jr = Z,Aiikt,b,,,h = Z,Atikicos 

(12) 

FIG. 1. Flow geometry and coordinate system. 

The governing equations, the conservation of mass, 
Darcy’s law and the conservation of energy, are given 
in equations (l)-(3), which are the same as we used 
in the previous paper [l] 

v-v=0 (1) 

VP-Ra10+RaGa42+v = 0 (2) 

-(v~V)O+V20 = so/at (3) 

where, 1= [ -cos 4, sin 4.01 indicates the unit vector 
in the down vertical direction. For convenience, we 
replace 0 by 0 = 0 - (1 -In r/in R). Thus equations 
(2) and (3) are rewritten as 

. 
VP* + 0 

i 1 

-18+&o (4) 
0 

where P* = PIRa-Garcos4+r(l -lnr/ln R) cos.4. 
The boundary conditions to be satisfied are 

V,=f?=O, at r= l,R 

v, = aelaz = 0, at z = 0, L. 

The equation of continuity is satisfied identically by 
introducing the vector potential 

Taking the curl of the equation of Darcy’s law, we 
eliminate the pressure term and obtain the following 
equations : 

V’$~-~+~~]=Rasin~~ (8) 

V’$+ - [%--;!$I= Racoseg (9) 

V’ll/, = -Ra sin4g+cos$ig . (10) 

(13) 

(15) 

where, ‘ _ ’ denotes a truncated series, and 

z2=c; 

101 

Z,= 1 ; -L,= 1. (16) 
110 100 

These trial functions were formed from an extension 
of the 2-D ones developed in the previous work [l] ; 
they are orthogonal in the annular space and satisfy 
the boundary conditions. Identically corresponding 
to equations (12)-(14) are the velocity expansions that 
satisfy the boundary conditions and the continuity 
equation : 

1 . 
x -sin 

r ( 1 
ilnr cosjdcosgz (17) 
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x ;cos ilnr fxsj4sinFz. (19) 
( > 

The Galerkin method is based on the idea that a given 
function (here residual) must be zero everywhere in a 
given space if it is normal to every term of a complete 
series (here trial functions) in the space. The pro- 
cedure is practically conducted by multiplying the 
residual with the trial functions and then integrating 
over the space. In the published works [17, 181 dealing 
with 3-D natural convection in horizontal or inclined 
porous boxes, the vector product using the velocity 
vector has been adopted to form the residual equation. 
In the present study, scalar products using com- 
ponents of vector potential are used. Discussions are 
made on differences and relations between the two 
procedures in the following and in the Appendices. 

(a) Residual equations by scalar product (using 
$,, $#, JIZ and 0). Inserting the truncated series of 
equations (12x15) into equation (8), we obtain an 
expression for the scalar residual 

(20) 

The Galerkin procedure gives a set of simultaneous 
equations 

(Res, * tir,_ > = 0 

l=O,N,; m=l,N,; n=l,N, (21) 

where the angular brackets mean integration over 
the annular space. The other two sets of equations for 
Res, and Res, are obtained in the same way. Thus, 
we have three sets of equations for the unknowns A,, 
BUk, and C,,. 

(b) Residual equations by vector product (using v-6’ 
formulation). Inserting a truncated series f directly 
into the equation of Darcy’s law, equation (4), we 
have a residual in vector form 

- ne”+ ;G. (22) 

The corresponding set of residual equations is 

(Res*v,,,,,) = 0 

l=l,N,; m=O,N,; n=O,N,. (23) 

Since equation (23) produces only one set of residual 
equations, the vector trial function must have the 
following form : 

V = c EgkVijk = c Elik (24) 

One choice is to let A,,,, = B,jk = C,, = Ellk in equa- 
tions (17)-( 19). However, we consider herein the fol- 
lowing trial functions which are very close to those 
usually adopted in the literature [17, 181: 

7 = c Et,k 

F + j2)tsin(~lnr)cosjgEos~~ 

X j(~)fcos(~lnr)sinj~cos~z 

~($~cos(flnr)cosj+sin~r 
-I 

(25) 

It is a combination of two sets of trial functions, each 
involving a pair of velocity components and satisfying 
the boundary conditions and the continuity equation 
in corresponding 2-D (r-4 or r-z) planes. 

We can easily find that equation (25) is a special 
case of equations (17)-( 19) under the conditions 

(i”) (26) 

which yields Eijk in equation (24) as 

Eiik = (kn/L)‘+ j2 
’ [k”BUk-jC#]. (27) 

L 

Now, it is found that this condition has an equi- 
valent 

1 av _z__p_ 
r 84 

1 aye 
r2 az 

which is not the case in the present problem unless the 
flow pattern is two-dimensional. As will be shown 
later, trial functions (25) cannot produce correct solu- 
tions for 3-D flow. In Appendix A, a further dis- 
cussion is also made for the case of an inclined box, 
which leads to the conclusion that this formulation is 
correct only in the horizontal case or in the case of 2- 
D flow. 

2.3. Solution procedure 
Evaluating every term of the inner products in the 

residual equation (21), which corresponds to equation 
(8), we obtain equations for the amplitudes of the 
modes, A,,,,,,, B,,,,,, C,,,,,. Those corresponding to equa- 
tions (9) and (10) are also obtained in the same way. 
They are as follows : 

I=O,N,; m=l,Nj; n=l,Nk (29) 
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l=l,Ni; m=O,Nj; n=l,N, (30) 

; c,ci,,,n = ,zl Cs[(l+~,,)T,-,,~-T~,,+,,~l i= I 
i+/=odd 

+C~[(m+~,~)T,,,-~,~+m~,,+,,l+Clo 

I= l,Ni; m = l,N,; n=O,N,. (31) 

Similarly, from the energy equation we have 

+i$o 3 g [C,,C,+C,,B,+C,,A,lT, 
I=0 mj_r‘y = “-IV& 

I=l,N,; m=O,N/; n=O,N, (32) 

where a = (Z,Im-j(, In-kl) and jl = (i,ljl,lkl), and 
the coefficient functions appearing in these equations, 
i.e. C,-C,6, are given in Appendix B. Equations (29)- 
(32), derived from the initial value problem (8)-(10) 
and (5), constitute a first-order non-linear ordinary 
differential system and are solved as follows. First, 
for a set of initial values of T,,,,,, equations (29)-(31) 
are iteratively solved to determine the values of Aim, 

4,” and Cl,,,, ; they are then used in integrating equa- 
tion (32) to obtain T,,,,,,‘s for the new time step. As can 
be found in Appendix B, the coefficient for A,,,,,,, i.e. 
C,(i = I), is much larger than the others on the 
left-hand side of equation (29) and the similar feature 
is also found in equations (30) and (3 1). As this makes 
the solutions converge very fast, two or three iter- 
ations are actually enough to obtain converged solu- 
tions with a maximum error of 0.001. 

The time-marching integration is carried out with 
the rational Runge-Kutta method developed by 
Wambecq [19] as an explicit method for solving stiff 
ordinary differential equations, which is stable at 
much larger time intervals than the conventional 
Runge-Kutta method. The effectiveness of this 
method in integrating equations for natural con- 
vection problems was also confirmed in our previous 
work [l]. The radius ratio R is set to 2.0. The value 
of 0.94 is chosen as the cell width L for convenience 
of comparing with the experimental data available [2]. 
The time intervals used are between 0.003 and 0.01. 
Time-marching is continued until the relative change 
in the average Nusselt number becomes less than 
0.0001. The CPU time for an average run with 
NixNixN,= 10x13~5 is about 20 min with an 
FACOM-VP100 computer. 

3. RESULTS AND DISCUSSION 

3.1. Comparison between the two Galerkin procedures 
To form the residual equations of Darcy’s law, the 

above-mentioned two Galerkin procedures using 

either the scalar or the vector product are formulated 
and coded. The procedure using the scalar product, 
as given in equation (21), is proved to be com- 
putationally effective and to produce 3-D results 
which coincide with those obtained by a finite-differ- 
ence method [13]. However, the procedure using the 
vector product, equation (23) fails to produce con- 
vergent 3-D results. When perturbations or converged 
solutions obtained from other methods are taken as 
initial values, the resulting solutions by the procedure 
either become two-dimensional or diverge fast. The 
validities of the two sets of trial functions, equations 
(12)-(14) (or identically equations (17~(19)) and 
(25) are therefore examined by expanding a con- 
verged solution for a single cell of 3-D spiral flow 
which is obtained by a finite-difference method with 
a mesh grid of 21 x51 x21 (rx$xz). If a series of 
trial functions is a complete set, the solution expanded 
with it approaches a real solution with increasing trun- 
cating number of the expansion. Thus the following 
average residual should approach zero 

Res, = 
( 

(Vxi),-Racos4$ 
I 

(33) 

where j and e” are truncated series for either of the 
two expansions, and equation (33) is identically the 
same as the averaged residual of equation (9). Here 
Res, is chosen because $$ gives the cellular convection 
in the r-z plane at the top of the annulus and is 
most sensitive to trial functions, and also because both 
cos 4 and a@/& have large values at the top, where 3- 
D flow occurs, so that (Races d, %I/&), which takes 
the same value for the two procedures, can be used as 
the scale factor for the residual. This avoided numeri- 
cal integrating of the absolute value of the term in 
angular brackets, which would take much computer 
time for large cutoff numbers. In Fig. 2, the results 
are compared where N is set equal to Ni = N, = Nk 
for convenience. It is found that the series using trial 
functions for the scalar product, equations (12)-( 14) 
or identically equations (17)-(19) gives a converged 
solution, whereas the series using trial functions for 
vector product (25) gives a diverged solution with 
increasing N. This indicates that the use of an incom- 
plete series of trial functions may yield solutions that 
do not converge to the differential equation we 
attempt to solve. 

3.2. Multiple solutions corresponding to diferent initial 
conditions 

As described and discussed in our previous work 
dealing with a 2-D problem, the initial condition 
sometimes plays a determining role in the problem 
involving instability. It should be noted, however, that 
there is no general way for choosing initial conditions, 
particularly when stability is involved. Instability 
expected to occur in the present problem is mainly 
due to a reverse temperature gradient at the top of the 
annulus, as is similar to the case of the well-known 
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__ 
"4 5 6 7 6 9 10 11 12 13 

Truncating Number 

FIG. 2. Residuals for two Galerkin procedures : (a) by incom- 
plete series equation (25) ; (b) by complete series equations 

(17)-(19). 

Benard problem. In such a problem, an initial per- 
turbation is necessary since the unstable change of 
tIow patterns as well as the onset of convection are 
usually caused by small ~~urbations in nature ; the 
use of the conduction state or a uniform temperature 
distribution as initial conditions may prevent these 
solutions from being obtained. The number of steady- 
state multiple solutions at a given Ru is an intrinsic 
feature of the problem and should be independent of 
initial conditions. However, there is no general 
method at present to determine the number in such a 
complicated non-linear problem ; it should be 
analyzed case by case, and empirically in most cases. 
The simplicity of the geometric and boundary con- 
ditions in the present problem allow us to assume 
that the possible branching solutions take the form of 
secondary (m~tiple~ cell patterns extending at the top 
region of the annulus in either circumferential or axial 
directions. The former involves reported 2-D bran- 
ching solutions of multicellular flow [l] ; and the latter 
involves a 3-D branching solution of a spiral flow 
which is treated in the present work. 

Table I lists the initial conditions adopted. Since 
the velocity is set to zero, these conditions do not 
conflict with any of the governing equations. Types 1, 
2 and 3 are 2-D ones corresponding to the conduction 
state or the uniform temperature distribution with and 
without 2-D oriented perturbations ; they produce 2- 
D uni-, bi-, and tricellular flows as shown in Fig. 3. 
Type 4 corresponds to oriented 3-D perturbations, 
where (- l)jT,, I are given values with the same sign 
so that a wavy distribution along the axial direction 
is formed at the top of the annulus (4 = n). It gen- 
erates 3-D flows the structures of which will be dis- 
cussed later. In Table 2, dominant modes for 2- and 
3-D branching solutions are listed in the order of their 
absolute values. Here, by ‘mode (i,j,k)’ we mean a 
harmonic component corresponding to one term in 
the Galerkin expansion; it specifies a flow pattern 
satisfying boundary conditions with wave numbers 
i,j,k in the I’-, C#J- and z-direction, respectively. We 
can find that among the branching solutions, common 
modes exist describing the main flow circulation which 
is nearly two-dimensional even for 3-D spiral flow; 
they are (1, 1, 0), (2,0,0), (2: I, 0), (I, 2,0), etc. Special 
modes, underlined in the table, also appear cor- 
responding to different secondary flows occurring at 
the top region of the annuius. In the case of 3-D flow, 
modes (I,j, 1) become dominant. It is found that the 
value of (- 1)/T,, , varies very regularly and has the 
same sign as shown in Fig. 4. This contributes to form 
a temperature distribution corresponding to a 3-D 
spiral flow. 

3.3. Stability of the multiple solutions 
Initial condition Type 5 was also introduced to find 

which of the branching solutions would be preferred 
under random initial conditions. When the amplitude 
of the random ~rturbation was small, the 2-D uni- 
cellular flow became dominant ; while when the amph- 
tude was large enough, above 0.001-0.02 varying with 
Ra, the 3-D flow appeared. Thus, the 2-D unicellular 
and the 3-D spiral flows seem to be more apt to 
become dominant than the other 2-D multicellular 
flows. 

Table 1. Various initial conditions 

Type 1 Type 2 Type 3 Type 4 
for 2-D unicellular for 2-D bicellular for 2-D tricellular for J-D spiral tiow Type 5 

(a) all T+* = 0 all Tv, = 0 all T+ = 0 al1 Ttik = 0 Random 
except except except dist~butions of 

T I30 = ‘9 T 160 = a T,,, = --E perturbations 
T 140 = --E T 170 = --E T,,, =E adding to 8 = 0 
T 150 = s T 180 = 6 T ,*I = --E 

T 190 = --E T II, = 6 

(b) 
2i 

adding TIO,, = - z 
n(a +r ) 

2a[(-l)‘R-l] 
n(u2 + i’) 

to the above initial conditions 

E( >O) = 0.0014 I : (a) conditions corresponding to pure or perturbed conduction state; (b) conditions 
corresponding to pure or perturbed uniform temperature distribution. 
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unicellular bicellular tricellular 
FIG. 3. Two-dimensional branching solutions which are the same as those obtained in the previous work 

PI. 

Table 2. Dominant modes of multiple solutions for Ra = 120 

2-D unicellular 
Mode To, 

2-D bicellular 
Mode To,, 

2-D tricellular 
Mode T IIk 

3-D spiral flow 
Mode T Ik 

LLO -0.659 l,l,O -0.508 
2,0,0 -0.165 m 0.191 
2,130 0.141 2,0,0 -0.185 
1,2,0 0.134 l_4J3 -0.173 
3,1,0 -0.103 2,1,0 0.161 
2,290 -0.081 m 0.128 
1 ,o,o -0.061 3,130 -0.110 

1 ,w -0.109 
1,w - 0.085 
l_6_g -0.081 

, / I I , I I I 

-0.11 I I I I I I I I I I I I I 
012345678 9 10 11 12 13 

( 1. j, 1 1 

FIG. 4. Dominant modes of temperature (1, j, 1) for 
Ra = 150, L = 0.94. 

In previous work using the finite-difference method 
[13], 3-D results could not be obtained. This seems to 
be due to the fact that the use of converged solutions 
at a slightly lower Ra as initial conditions reduces the 
numerical perturbation of an artificial, axial tem- 
perature gradient, which is inherently introduced from 
the GaussSeidel iteration in the SOR method (see 
Appendix C). It is proved that unless their amplitudes 
are large enough, perturbations, either oriented or 
random, cannot result in branching solutions other 
than the unicellular one. This indicates that the tran- 
sition of flow patterns from the basic 2-D unicellular 
to other branching solutions seems to be nonlinear 
and cannot be treated with the linear theory. 

1,lSJ - 0.487 1,1,0 -0.561 
1,3,0 0.170 lJJ 0.173 
2,0,0 -0.166 2,030 -0.161 
2,1,0 0.118 2,1,0 0.133 
l_7Jl -0.115 lJJ -0.128 
l_8JI 0.113 3,1,0 -0.107 
1,2,0 -0.112 l,O,O -0.104 
l,O,O -0.108 u - 0.096 
3,130 -0.092 l-3-l 0.076 
l_9_0 -0.090 2,2,0 -0.070 

The bifurcation phenomenon discussed herein does 
not result from the use of the Galerkin scheme ; the 
same multiple solutions can be obtained when similar 
initial perturbations are introduced to the scheme 
(described in ref. [13]) based on the finite-difference 
method. In previous experiments [2, 31, the flow was 
reported to be 2-D at lower Ra and 3-D at higher Ra. 
Nothing was reported related to the fact that more 
than one flow pattern exists at a given Ra. However, 
these experiments were mainly aimed at finding over- 
all heat transfer rates and no attention was paid to 
the possibility of bifurcation. The authors therefore 
believe that further experimental work is needed to 
find whether the same bifurcation can be observed in 
the laboratory. 

3.4. Structure of the 3-D spiralflow 
Figure 5 shows the temperature variation along a 

generatrix at the top of the annulus. In this figure, the 
numerical result obtained with the Galerkin method 
is extended by symmetry and periodicity to involve 
more than one cell and compared with the measure- 
ment by Caltagirone [2]; agreement is qualitatively 
satisfactory. To confirm the validity of the numerical 
result further, it is also compared with that obtained 
by the finite-difference method, and a very good agree- 
ment is obtained. The average Nusselt numbers at 
the inner and outer surfaces deviate from each other 
by less than 1%. 

The flow field and isothermal lines on several r-z 
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0.2- . 
a Exp. by Caltagirone 

FIG. 5. Temperature distribution along a generatrix at the 
top with r = 1.5, Ra = 150, L = 0.94. 

planes are shown in Fig. 6, where it is shown that the 
flow at the top region is very similar to a couple of 
Benard cells in a horizontal rectangular channel 
heated from below. This is due to the strong inverse 
temperature gradient there. These axially extending 
cellular flows become weaker at lower r-z planes, and 
at C#J = 90” they tend to be difficult to identify. In Fig. 
7, isotherms, flow fields and streaklines are plotted for 
two special symmetry planes, planes I and II, where 
the streaklines are planar. In plane I, the secondary 
cell adds a don-fo~ard flow to the main circulation 
at the top of the annulus, and the temperature dis- 
tribution is very like that for 2-D bicellular flow. It is 
found that velocities are nearly zero at two places, the 
top region near the inner cylinder and the center of 
the main circulation ; and the streaklines show an 
interesting pattern : all of them end at the above two 
places. The center of the main circulation, located at 
(1.45, 106”), looks like a sink, but not a real one since 
the flow is three-dimensional. In plane II the isotherms 
and flow fields are very like those for the simple 2-D 
unicellular flow since the secondary flow is upforward 
at the top of the annulus, which is the same as the main 
circulation. The corresponding streaklines, however, 
show an interesting toroidal path starting at a point 
nearly the same as the ‘sink’ in plane I and spiraling 
towards the outer cylinder. It looks like a source. The 
streaklines in these symmetry planes will be helpful in 
our understanding of the 3-D spiral flow between 
them. 

Figures 8(a)-(c) give streaklines of the 3-D spiral 
flow, which were obtained by three-dimensionally 
integrating the velocity field from a given starting 
point. As shown in Fig. S(a), starting from a point at 
the top region, the streakline forms a co-axial double- 
helix which is similar to that observed in an inclined 
rectangular box [20]. While starting from near the 
‘sink’ in plane I, the streakline spirals towards plane 
II along the axis linking the ‘sink’ and the ‘source’, 
which can also be considered as the axis of the main 
circulating flow. As it gets doser to plane II, it takes 
a toroidal path similar to that shown in Fig. 7 and 
will finally reach the outer layer directly affected by 
the double-helix cell at the top and then spirals back 

60 
, 
- -==x - 

i 

f 1 

isothermal flow field 

FIG. 6. Flow field and isotherms in the r-z planes for 3-D 
branching solution : Ra = 100, L = 0.94, N, x NJ x Nk = 

lOxi3xS. 

isotherms & flow field streak lines 

FIG. 7. Isotherms, flow fields and streaklines in symmetry 
pku~es I and II : Ra = 100, L = 0.94. Open squares and closed 

circles denote starting and end points, respectively. 

towards plane I. This is shown in Fig. 8(b), where we 
can find that the streakline returns to within a very 
small distance from the starting point after spiraling 
several circuits of the toroidal path as numbered in 
order. The history of a toroidal circuit can also be 
found easily from the side view ; the circuit generally 
becomes closer and closer to the bottom except the 
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RG. S(a). Streaklines starting at points (r,#,zf = 
(1.06,174”,0.20) and (1.45,1 10°,O.lO), Ra = 100, L = 0.94. 

FIG. S(b). Streakline starting at (i.4S,~“,0.15). 

last one. Since the last toroidal circuit, No. 14, is in 
the very vicinity of plane I, it spirals towards the 
‘sink’-‘source’ axis along a path that can be found in 
Fig. 7. In Fig. 8(c), the starting point is chosen further 
from the axis; this results in a closed streakline with 
the same feature as that in Fig. 8(b), except that it 
does not get very close to plane II and is located in 
the remaining space of the streaklines in Figs. 8(a) 
and (b). 

Fro. 8(c). Streakline starting at (l.lO,~a,O.lO). 

3.5. 1nfruence of thefrow pattern on heat transfer 
In Fig. 9 local Nusselt numbers are plotted for 3-D 

spiral flows. It was found that the maximum Nusselt 
numbers in the upper part of the annulus are greatly 
increased owing to the 3-D cells extending along the 
axial direction. The average Nusselt numbers, 
however, are less affected since the 3-D flow occurs in 
a limited region at the top of the annulus, For the 
same reason, only a small difference can be found 
between transient results for Z- and 3-D flows, as 
shown in Fig. 10. 

In Fig. 11, steady-state Nusselt numbers are plotted 
against ti for 2- and 3-D branching solutions. Two- 
dimensional multicellular flows, the bi- and tricellular 
ones, agree better with experimental data, but they 
proved less preferred than the other branching solu- 
tions-the 3-D spiral and 2-D unicellular flows. 
Although the experimental data available are also 
insufficient, the deviation from experimental data at 
higher Ra is thought to be possibly caused by the 
physical model using Darcy’s law and the assumption 
of the uniform medium. Kaviany [21] examined the 
effect of non-Darcy terms, such as inertia and 
diffusion, but showed that those terms could not 
increase overall heat transfer rates numerically cal- 
culated. Muralidhar and Kulaki [Ill examined the 
effect of a non-uniform distribution of porosity, show- 
ing that the ‘channeling effect’ caused by a high 
porosity near the wall would greatly increase the heat 
transfer. Despite that these problems remain, 
however, we believe that the 3-D results obtained in 
the present work reveal essential features and they are 
thus applicable even when the model is modified. 
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FIG. 9. Local Nusselt numbers at the inner and outer surfaces, Ra = 100, L = 0.94. 
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FIG. 10. Time variation of average Nusselt numbers for 2- 
and 3-D flows : Ru = 100. 
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FIG. 11. Average Nusseh numbers for 2- and 3-D flows. 

4. CONCLUDING REMARKS 

Numerical results have been presented for the 3-D 
natural convection in a horizontal porous annulus 
heated from the inner surface. Conclusions drawn are 
summarized as follows. 

(1) A Galerkin scheme using components of vector 
potential has been developed and compared with the 
Galerkin scheme using velocity vector ; the latter was 
proved unsuitable. 

(2) Multiple solutions have been obtained cor- 
responding to initial perturbations. Results from ran- 
dom initial conditions indicate that the 2-D uni~llular 

and the 3-D spiral flows seem more apt to become 
dominant than the other 2-D multicell~ar Bows. It 
was found that 3-D flows cannot be obtained unless 
the initial perturbation is strong enough. 

(3) The structure of a 3-D spiral flow has been 
clarified. At the upper part of the annulus, there exist 
secondary flows with closed streaklines of co-axial 
double helices as observed in inclined rectangular 
boxes. 

(4) Compared with the 2-D unicellular flow, the 3- 
D spiral flow produces a higher maximum local heat 
transfer rate in the top region of the annulus, which 
enhances the overall heat transfer. 
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APPENDIX A 

Simply but now losing generality for comparing with refs. 
f 17,l S], we consider natural convection in an inclined porous 
cubic box the heated surface of which is at an angle #o to 
the horizontal plane. The equation of Darcy’s law is written 
as 

sin (PO 

VPi-v=RaO 

[ 1 0 . (AlI 
as 40 

The corresponding vector potentials are 

$, = c b, ws ixx sin jny sin knz 

J/r = c ci,* sin inx cos jny sin knz 

3/r = c a,, sin inx sin jury cos knz. 

Sincev=Vx#wehave 

V, = x n(ja, -kc,,) sin inx cos jny cos knz 

Vv = c n(kb, - ia**) cos inx sinjny ws knz 

V, = z n(iqjk -jb, ) cos inx cos j?ry sin knz. 

In refs. [17, 181, expansions were adopted as follows: 

V X,,l 

v = CeUk VyUi 

[ i V 5,1 

r ikn’ sin inx cos jny cos knzl 

(A3 

(A3) 

= CeUk jkn’ cos inxsinjny cos knz . 
- (~*+~~)rr~~~~ixxco~jnysin knz 

1 

(~4) 

We can easily find that equation (A4) is a special case of 
equation fA3) under the condition 

a!, = & (i6,, -t-j+ ) (As) 

which gives eUL’s in equation (A4) as 

1 
e,k = . 12 t&k - &jk ). WI 

This condition has a physical meaning as 

9 = (V xv), = 0. (A7) 

However, by taking the rotation of equation (Al), we have 

ao 
(Vxv), = sin&Ra- 

ay 
(AS) 

the right-hand side of which cannot be zero in the problem 
of 3-D convection in the inclined case, i.e. (PO # 0 and 
aO/ay # 0. From the results shown in Section 3, it is inferred 
that using this incomplete expansion series will prevent the 
results from converging with increasing truncating number. 

APPENDIX B 

Constants appearing in equations (29)-(32) 

C, = ~[azmz(4a2+iZ+12)+2i”B]X~+~~ 
an2n4 

#‘~(l--S/O) 

031) 

CZ = - ~Lai(4az+i’-Iz)x, (82) 

nn’ai 
C, = -Ra----- 

4(i2 -12) 033) 

C4 = {~ilL[2(~+m2)az+4az+12-iz]X, 

+ g 
1 

(I+&,,) (B4) 

C5 = - ~mLal(4a’+12-i’)X, (B5) 

C6 = -Ragna 
m+l m-l 

(m+1)‘+j2 - (m-l)‘-j* 1 (‘@ 
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C, = (1 +&“I 
(B7) 

C, = -Ra &(l +&I) 

Cg = RasLa(1 +a,,) (B9) 

c 

10 
=Ra~w-wYlg s 

2(a2+12) m’ “’ 
(Blo) 

C,, = gLa(l +a,,)(1 +&) 

C,, = klai(l +a,,)(1 +6,0)X, 

- ~Lil(l’+2a2m2+2aZ+i2)X, 

(Bll) 

(B12) 

-6,,!g 
1 

(1 +&,)(l +a,,) (B13) 

C,4 = -EL (m-j)X6 + fX, 
[ 1 

x (1 +a,)(1 +a,)(1 +&k)&-, (B14) 

Cl5 =$ (n-k)X, +;x, [ 1 
x (1 +&,)(l+hy)U +&,,V’-, @15) 

C,, = $X&j--mk)(l +a,)(1 +6,)0,_,0,_, (B16) 

where 

1 

1 (x > 0) 

D, = 0 (x = 0) (B17) 
- 1 (x < 0) 

stands for the Dirichelet function, and 

x0 = 

[ 

1 _ A(- 1)‘+‘+’ 

1 
(B18) 

X, = {[4a2+(1+1+i)2][4a2+(/-I-i)2]}~’ (B19) 

X2 = {[4a2+(~+I-i)2][4a2+(I-I+i)2]}~’ (B20) 

r 1 -A(-‘)I+/ 
I _. 

x3 = [4a2f;(l+i)2][4a2+(Iti)2] 
(B21) 

[l -R2(- l)‘+‘] 

x4 = [4a2+(I+i)2][4a2+(I-i)2] 
(B22) 

x = [I -x(-l)q 
5 [a2+(i+l)2][a2+(i-[)2] 

(B23) 

X6 = ~X,[(X,-X,)(4a2+12+312+3i’)61i(X,+X,)] 

(~24) 

x, = -2az1X,[I(X,-X,)-i(X,+X,)]. (B25) 

APPENDIX C 

It is easy to see that, if the term a0/az on the right-hand 
side of equations (8) and (9) is initially set to zero as it should 
be under 2-D initial conditions, the results can only be two- 
dimensional. In the previous work [13], however, the axial 
perturbation was considered to exist due to the Gauss-Seidel 
iteration in the SOR method, in which discretization for the 
term was conducted as 

a0 e(r,~,z+Az~-e(r,~,z-~)“+I -= 
az 2Az (Cl) 

where n stands for step number of iteration and AZ grid size 
in the axial direction. In equation (Cl), we used values of 
temperatures at different iteration steps so that we introduced 
an artificial temperature gradient in the axial direction which 
would cause the onset of 3-D flow. However, the numerical 
gradient is small if the increase of Ra is small (although a 
change of the acceleration factor in the SOR method plays 
the same role). The reason that the 3-D results in the hori- 
zontal case could not be obtained in previous work [13] seem 
to be that the perturbation was suppressed since Ra was 
increased step by step as &25-50-100. Increasing Ra directly 
from 0 to 100 we obtained 3-D results. It is worth noting 
that simple iteration using 

ae e(r, 4, z+Az)” -e(r, 4, Z-AZ)” 

az 2Az (C2) 

will prevent the artificial gradient from appearing, and more- 
over, the round-off error by a computer does not produce 
such perturbations since a computer truncates the calculation 
in every +-here z+ AZ and z- AZ-planes exactly the 
same way. In this case, initial perturbations must be intro- 
duced to obtain branching solutions which are observed 
in the experiment. This was also confirmed in the case of 
rectangular geometry. 

UNE ETUDE NUMERIQUE DE LA CONVECTION NATURELLE 
TRIDIMENSIONNELLE DANS UN ANNEAU POREUX HORIZONTAL PAR LA 

METHODE DE GALERKIN 

R&m&--Un schema de Galerkin est developpe pour Studier la convection naturelle tridimensionnelle 
dans un espace annulaire sat& de fluide et chauffe par la surface inteme. En supplement des solutions 
bidimensionnelles donnQs par l’auteur dans un texte anterieur, on obtient des solutions tridimensionnelles; 
des cellules secondaires, avec des lignes proches des helices doubles coaxiales, sont trouvees s’etendre le 
long de la direction axiale dans la region sup&ieure de l’espace annulaire. Ceci conduit a un accroissement 
du maximum du coefficient local de transfert de chaleur, ce qui ameliore le transfert global par rapport a 

celui d’un ecoulement bidimensionnel unicellulaire. 
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EINE NUMERISCHE UNTERSUCHUNG DER DREIDIMENSIONALEN 
NATO‘RLICHEN KONVEKTION IN EINEM HORIZONTALEN PORGSEN RING 

MIT DER GALERKIN-METHODE 

Zusammenfassung-Eine Galerkin-Methode wird entwickelt, urn die dreidimensionale natiirliche Kon- 
vektion in einem fluidgesiittigten porijsen Ring, der an der inneren Flbhe beheizt wird, zu untersuchen. 
Zustitzlich zu den zweidimensionalen Mehrfachliisungen, iiber die im vorhergehenden Artikel des Autors 
berichtet worden ist, erhllt man dreidimensionale Liisungen. Es wurde herausgefunden, dal3 sich im oberen 
Teil des Rings in axialer Richtung Sekundlrstromungszellen ausbilden. Die Streichlinien haben die Form 
einer dreidimensionalen geschlossenen koaxialen Doppel-Helix. Dies bewirkt einen erhiihten maximalen 
iirtlichen Wiirmeiibergangskoefenten, der folglich den gesamten Wlrmeilbergangskoeffizienten gegen- 

iiber demjenigen fiir die zweidimensional einzellige Stromung verbessert. 

IIPMMEHEHAE METOW I-AJIEPKHHA )IJDI rIHCJIEHHOI-0 WCCJIE~OBAHHII 
TPEXMEPHOft ECTECTBEHHOfi KOHBEKHHM B I-OPHBOHTAJIbHOM I’IOPWCTOM 

KOJlbqEBOM KAHAJIE 

hmoTmPaspa6oTaHa cxeMa IUUI wcnenonatm M~TOJIOM h.nepnHHa qexMepHoi4 ~CT~CTB~HHO~~ 
KOHBeKUHH B HaCbUUeHHOM WUWXTbtO nOpHCTOM YOJlbUeBOM KaHZiJlC C Hi3l-pEUleMO~ BHyTp&ZHHeii 

noeepxeocrbto. ll0hfH~0 nByMepHsrx pemeHHl,KoTopble ~~LIIH npencraeneHbl aanTopabui B npenbwy- 
Uleii pa6oTe,nonpeHu TpexMepHbIe pelUeHliK. Hatierto, 'IT0 BTOpH'lHble K’XitKH,KOTOpble HMCIOT BHIl 

3aMKHyTblX KoaKcHanbwx CABO~HH~IX crmpanel, BwTnrHBawTcn 6 oceno~ HanpasneisHU B BepxHel 

'iaCTH KOJlbUeB0r0KaHWIa.~O Bbl%IBa~yBeJlH'teHHeMaKCHMaJlbHOrO 3Ha~eHHRJlOKiWlbHOrOL03$$H- 

UHeHTa TeIUIOO6MeHa, PTo,ecTecTBe~~0, BeneT K yBeJIHWHHI0 CyMMapHoro Tennoo6MeHa no cpasee- 

HHIO C TeM, KOTOpOe Ha6nlonaeTcn IIpH DyMCpHOM OJIHOR~CHCTOM Te'IeHHH. 


